Comparative analysis of the SBP-box gene families in P. patens and seed plants.

نویسندگان

  • Maike Riese
  • Susanne Höhmann
  • Heinz Saedler
  • Thomas Münster
  • Peter Huijser
چکیده

To come to a better understanding of the evolution and function of the SBP-box transcription factor family in plants, we identified, isolated and characterized 13 of its members from the moss Physcomitrella patens. For the majority of the moss SBP-box genes, clear orthologous relationships with family members of flowering plants could be established by phylogenetic analysis based on the conserved DNA-binding SBP-domain, as well as additional synapomorphic molecular characters. The P. patens SBP-box genes cluster in four separable groups. One of these consists exclusively of moss genes; the three others are shared with family members of Arabidopsis and rice. Besides the family defining DNA-binding SBP-domain, other features can be found conserved between moss and other plant SBP-domain proteins. An AHA-like motif conserved from the unicellular alga Chlamydomonas reinhardtii to flowering plants, was found able to promote transcription in a heterologous yeast system. The conservation of a functional microRNA response element in the mRNA of three of the moss SBP-box genes supports the idea of an ancient origin of microRNA dependent regulation of SBP-box gene family members. As our current knowledge concerning the roles of SBP-box genes in plant development is scarce and the model system P. patens allows targeted mutation, the material we isolated and characterized will be helpful to generate the mutant phenotypes necessary to further elucidate these roles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted Gene Knockouts Reveal Overlapping Functions of the Five Physcomitrella patens FtsZ Isoforms in Chloroplast Division, Chloroplast Shaping, Cell Patterning, Plant Development, and Gravity Sensing

Chloroplasts and bacterial cells divide by binary fission. The key protein in this constriction division is FtsZ, a self-assembling GTPase similar to eukaryotic tubulin. In prokaryotes, FtsZ is almost always encoded by a single gene, whereas plants harbor several nuclear-encoded FtsZ homologs. In seed plants, these proteins group in two families and all are exclusively imported into plastids. I...

متن کامل

An Evolutionarily Conserved Signaling Mechanism Mediates Far-Red Light Responses in Land PlantsC

Phytochromes are plant photoreceptors important for development and adaptation to the environment. Phytochrome A (PHYA) is essential for the far-red (FR) high-irradiance responses (HIRs), which are of particular ecological relevance as they enable plants to establish under shade conditions. PHYA and HIRs have been considered unique to seed plants because the divergence of seed plants and crypto...

متن کامل

Selaginella Genome Analysis – Entering the “Homoplasy Heaven” of the MADS World

In flowering plants, arguably the most significant transcription factors regulating development are MADS-domain proteins, encoded by Type I and Type II MADS-box genes. Type II genes are divided into the MIKC(C) and MIKC* groups. In angiosperms, these types and groups play distinct roles in the development of female gametophytes, embryos, and seeds (Type I); vegetative and floral tissues in spor...

متن کامل

Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/hydrolase) family of proteins in the bryophyte Physcomitrella patens.

This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi-gene families, probably reflecting the diverse roles of individual X...

متن کامل

The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall

Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gene

دوره 401 1-2  شماره 

صفحات  -

تاریخ انتشار 2007